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Rivier's experimental values [2]. By comparing the curves, our
formulas are found to agree well with Rivier’s experimental results.
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Resistivity of Thin Metal Films
H. K. CHAURASIA axp W. A. G. VOSS

Abstract—TIt is shown that the sheet resistance, and hence the
resistivity, of very thin metal films (<100 A) can be determined con-
veniently and accurately by microwave measurements. Accuracy is
limited by VSWR measurement, film-holder design, and short-
circuit quality, DC and microwave resistivily measurements are
given for gold films on cleaved mica.

I. INTRODUCTION

A waveguide impedance method due to Slater {1] for measuring
the conductivity of metal films has been used by Clark [2]. This
method is simpler than the field approach, which has been used for
metal and semiconductor films on thick substrates [3]-[6], and pro-
vides a useful technique for determining the conductivity of ultra-
thin (<100 A) metal films.

As the film thickness becomes comparable to the substrate surface
irregularities, its macroconductivity is as much a function of the film
structure as the microtopography of the substrate. Cleaved mica
faces, the smoothest available, show topographic irregularities of the
order of the lattice parameters [7]. These are at least seven orders of
magnitude smaller than a wavelength at 10 GHz, and as such will not
affect the wave.

A film of thickness [<«<3, the skin depth, and bulk conductivity o,
placed across a rectangular waveguide operating in the TE;, mode,
create an admittance o/ 4 ¥, where Y, is the admittance of the wave-
guide termination at the film and is zero when a perfect short is placed
at =0 (A,/4 behind the film in Fig. 1). The conductance ¢! then cor-
responds to the conventional definition of the dc sheet resistance, i.e.,

=1/0l 2/[]. The microwave value R,(u) can be measured as rZ,
when R.(u)>Zo, or Zo/r when R,(u) <Zs, where 7 is the VSWR and
Zy is the wave impedance at the operating frequency. Replacing the
film by a short circuit at z= —\,/4, any reactive part resulting from
a significant discontinuity due to the substrate and its mounting in
the waveguide will be indicated by a minima shift other than zero
(Ra(w) =Zo/r) or N /4 (Re(u) =7Z0).

It can be shown that a thin, lossless dielectric sheet of thickness d
and relative permittivity ¢ will cause a VSWR given by [8]

=1+ 22 Ve = 0T/ {T- 0] — 1] W

where A and A are the free-space and cutoff wavelengths, respectively.
The accuracy with which the resistivity p, =IR,(u) can be deter-
mined thus depends on 1) making /<3; 2) ¥;=0, demanding an ideal
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short circuit and lossless waveguide; 3) the accuracy of measuring r,
particularly when R,(u) is much different from Zo; and 4) the effects
of the discontinuity caused by the substrate and film holder.
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11, EXPERIMENTAL RESULTS

Measurements were made at 9700+ 2 MHz in X-band waveguide
for which Z,=>511.8Q for gold and gold-silver films deposited by high-
vacuum evaporation on air-cleaved mica sheets with d £0.03 mm and
mounted as shown in Fig. 1 [9]. The film dimensions between the
silver contact strips were 1 by 1/2 in, giving two squares in parallel.
Thus twice the dc resistance (measured to within +1-percent ac-
curacy) gives Rs. In practice, even with a mica sheet on both sides of
the film, there is sufficient capacitive coupling between the contact
strips and the broadside waveguide walls for the film to act essentially
as a conductance across the waveguide [10].

The discontinuity was assessed using the sliding load technique
[11]. The VSWR of the holder without a mica sheet was 1.035 (cor-
responding to a reflection coefficient || =0.017). With a 0.03-mm
thick mica sheet, the VSWR increased o 1.056 (|| =0.027). Con-
sidering T; and I in phase, I''=0.01 and r.=1.02, which closely
agrees with the value 1.0124 calculated from (1). The maximum
error, at R,(u) =Z,, is then found to be 3:2 percent if 7, is ignored. As
the VSWR can be measured to within 2 percent for #<10, the total
error is less than 45 percent for S0< R (u) <5000 @/

The measured values of R,(1t), Ry, pu, and dc resistivity po(=IR,),
the last two normalized to the bulk resistivity of gold (pg=2.44 X108
©Q-cm), are shown in Fig. 2 and 3.

III. DiscussioN

No direct correlation between R, and R,(x) has been found. Fig. 2
suggests that for R, below about 40 @/[], R,(u) is generally greater
than R,; there are some points where R,(u)~~R,; otherwise, R;(u) is
generally smaller than R,. These factors are further emphasized in
Fig. 3 where a transition from ps/pg <f’u/PG to po/pa>pu/pe is seen
to occur for I around 80 A. At 50 A, po/pa is about three times larger
than p,/pe, 2 difference far beyond the limits of experimental error.

Waveguide losses and an imperfect short circuit are likely to re-
duce the measured value of 7. Thus when R,(x) =rZs, Re(n) will be
smaller than R,; for the case when Rq(1) =Zo/7, Ri(u) will be larger
than R,. For the former case, however, £ is less than about 80 A and
a much more important factor is the surface microtopography of the
substrate. Carefully cleaved mica sheets, although atomically smooth
over large areas, still exhibit a hill-and-valley topography, and cleav-
age-step heights k are known to be ~20 A or integral multiples
thereof [7]. Fig. 4 shows an idealized cross section of a film with I
slightly larger than % and no deposition on the step. The resulting
constricted area through A’D forms a higher resistivity path for dc,
and a multiplicity of such defects would considerably increase the
measured R, value. E,, however, is essentially the same at faces 4B
and 4'B’ since h~10"7 X,. Also, E, (film) and the resulting film cur-
rent density ¢, (film) are uniform over [, since I <1073 5. Surface un-
dulations further lengthen the dc path. At microwave frequencies,
on the other hand, Ament [12] has shown that an approximate value
of the reflection coefﬁc1ent of a perfect conductor with statistically
distributed surface irregularities is exp (—2k22 sin® 6), where k2=

w?uoeo, 72 is the mean-square height of the irregularities, and 6 is the
angle of incidence of the wave. This is almost unity for #2<x® The
result of microscopic surface irregularities on R,(x) measurements
must therefore be minimal, The dc resistivity calculated using macro-
scopic film geometry is meaningless as I approaches % or (#2)1/2, par-
ticularly because no two cleavage faces will be the same.
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Compact YIG Bandpass Filter with Finite-Pole
Frequencies for Applications in Micro-
wave Integrated Circuits

PETER ROSCHMANN

Abstract—A miniaturized, narrow-bandwidth, two-stage YIG
bandpass filter is described that can be incorporated into microstrip
circuits. The selectivity is increased by introducing finite-pole fre-
quencies. This is realized by additional coupling between the input
and output lines leading to the YIG-coupling section.

The problem of achieving high selectivity in microwave inte-
grated circuits (MIC’s) has not really been solved for reasons that
microstrip is too lossy, dielectric resonators are temperature sensi-
tive, and cavity resonators are too large. This short paper describes
a fixed, tuned, YIG bandpass filter with permanent magnets that
satisfies the conditions required for narrow-bandwidth filters in
MIC’s: small size, tolerable losses, and temperature stability.

Although single-crystal YIG sphere resonators [1]* with typical
diameters between 0.3 and 1 mm are compatible in size with micro-
strip lines that have a substrate thickness and stripline width of the
same order, a hybrid integration of the YIG filter into the MIC was
preferred to a full integration of the YIG sphere resonators into the
microstrip substrate. There are several reasons that lead to the pref-
erence of a hybrid integration: 1) the biasing magnet, which in any
case must be built around the YIG filter; 2) difficulties in realizing
a planar coupling structure for YIG bandpass filters in only one
plane, as given by the circuit plane of the substrate; and 3) the ad-
justments and tests of the YIG filter are more easily made in a test
jig than in a more or less complex microwave circuit.

Therefore, the YIG filter was designed as a separate miniaturized
component which, like a transistor or a diode, can be built into the
appropriate part of the MIC. Fig. 1 shows the miniaturized YIG
filter as a separate component and the YIG filter component con-
nected to a microstrip substrate (seen from the ground plane side and
from the circuit side of the substrate). An area of only 8 X5 mm? is
needed on the circuit plane of the substrate for mounting and con-
necting the filter. The filter is a two-stage type consisting of two or-
thogonal semiloop coupling structures; the permanent magnet sys-

Manuscript received October 19, 1971; revised July 6, 1972,
The author is with Philips Forschungslaboratonum Hamburg 54, Germany.
1 In [1], the general properties of YIG resonators are described.



